
RESEARCH PAPERS 
Acta Cryst. (1998). A54, 7-18 

Direct Inversion of Dynamical  Electron Diffraction Patterns to Structure Factors 

J. C .  H.  SPENCE 

Department of Physics, Arizona State University, Tempe, AZ 85287, USA. E-mail: spence@asu.edu 

(Received 3 March 1997; accepted 11 June 1997) 

Abstract 
An exact nonperturbative inversion method is described 
for transmission electron diffraction which allows crystal 
structure factors to be obtained directly from the 
intensities of multiply scattered Bragg beams. These 
amplitudes are required at several thicknesses (or 
electron beam energies) and orientations of a thin crystal. 
The analysis applies to centrosymmetric crystals with 
anomalous absorption and to noncentrosymmetric crys- 
tals if the mean absorption potential only is included. 
Phases of stucture factors from noncentrosymmetric 
crystals are correctly recovered. Dynamical coherent 
convergent-beam microdiffraction patterns with overlap 
of adjacent diffraction orders, provide the required data 
and may be obtained from nanometer-sized regions. The 
method allows the direct synthesis of charge-density 
maps of unknown crystal structures at high resolution 
from electron microdiffraction patterns, using a scanning 
transmission electron microscope. Whereas this micro- 
scope must be capable of resolving only the first-order 
lattice spacing, much higher order reflections may in 
principle be determined. Such a charge-density map 
provides fractional atomic coordinates and the identifica- 
tion of atomic species (as in X-ray crystallography) from 
microcrystalline samples and other multiphase inorganic 
materials for which large single crystals cannot be 
obtained or X-ray powder patterns obtained or analyzed. 
In other language, this paper solves the inversion 
problem of quantum mechanics for the case of electron 
scattering from a periodic potential, described by the 
Schroedinger equation, in which the scattering is given as 
a function of some parameter and the potential sought. 
The diagonalization of large matrices is required - the 
method does not provide a closed-form solution. 

I. Introduction 
The measurement of crystal structure factors by electron 
diffraction has a long history (Cowley, 1978, 1992). By 
comparison with X-ray diffraction, the simultaneous 
excitation of hundreds of Bragg reflections is common in 
transmission electron diffraction, a consequence of the 
very large Ewald-sphere radius. To date, the most 
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sucessful structure-refinement methods have been those 
that assume single-scattering conditions and combine 
diffraction and high-resolution imaging data (see Dorset, 
1995, for a review). They are therefore limited to thin 
films less than a few nanometers in thickness and are 
ideally suited to the study of organic membranes or two- 
dimensional crystals. For small-unit-cell inorganic crys- 
tals of known structure, several methods of structure- 
factor measurement exist, including the intersecting 
Kikuchi-line method (Gjonnes & Hoier, 1971) and the 
critical-voltage method (Uyeda, 1968), both closely 
related to the Renninger effect of X-ray diffraction. 
These are useful for the study of bond charge densities. 
More recently, both amplitude and phase measurements 
of structure factors have been made with high accuracy 
by automated adjustment of forward dynamical computa- 
tions for agreement with convergent-beam rocking 
curves. In this way, for example, structure-factor phases 
have been obtained from noncentrosymmetric (acentric) 
crystals with an accuracy of better than one tenth of a 
degree (Zuo, Spence, Downs & Mayer, 1993), greatly 
exceeding the accuracy possible using X-ray diffraction 
and so allowing the study of bonding in noncentrosym- 
metric crystals. The extension of these multiple-scatter- 
ing optimization methods to the refinement of atomic 
positions is under way in several laboratories. Alterna- 
tively, approximations to the dynamical equations that 
emphasize the dominant bound transverse eigenstates 
may be used to determine unknown structures in 
combination with conditional Patterson functions 
(Vincent, Bird & Steeds, 1984). Most recently, an 
inversion scheme has been proposed based on high- 
resolution electron holograms (Scheerschmidt & Knoll, 
1995). 

The direct inversion of multiple-scattering electron 
diffraction patterns has challenged theoreticians for many 
years. The multislice theory of electron diffraction, for 
example, was developed for the purposes of finding a 
closed-form inversion and computational inversion algor- 
ithms continue to be developed based on this method 
(Spargo, Beeching & Allen, 1994). Since a closed-form 
Bloch-wave solution has been given for the general three- 
beam case (Kambe, 1957), there has been great interest 
in cases reducible to this solution. For centrosymmetric 
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crystals, this has recently been shown by elegant methods 
to be invertible (Moodie, Etheridge & Humphreys, 
1996). The three-beam solution also allows inversion 
based on the fine structure in convergent-beam electron 
diffraction (CBED) high-order Laue-zone (HOLZ) lines 
(Allen & Rossouw, 1993). Certain seven-beam cases in 
noncentrosymmetric crystals have been reduced to two- 
beam form (Moodie & Whitfield, 1994). 

A direct inversion method would offer great advan- 
tages in speed over trial-and-error forward computation 
methods, in addition to providing a general method for 
the determination of unknown crystal structures. Because 
multiple scattering renders the diffracted Bragg inten- 
sities sensitive to structure-factor phases, such a method 
also solves the phase problem of crystallography. Since 
the method is based on electron microdiffraction patterns, 
submicrometer crystal volumes can be analyzed. In an 
earlier paper (Spence, 1978), the use of overlapping 
coherent orders was analyzed for this purpose and the 
errors introduced by multiple scattering estimated. The 
purpose of this paper is to provide a direct nonperturba- 
tive solution to the N-beam inversion problem, assuming 
only that large matrices can be diagonalized by 
computation. The practical implementation of the scheme 
is briefly outlined. 

2. Forward-scattering theory 

The multiple diffraction of a collimated kilovolt electron 
beam traversing a thin slab of crystal was first described 
by Blackman (1939), who applied the Bethe multiple- 
scattering theory (Bethe, 1929) to the transmission or 
Laue geometry. Many modern treatments have since 
been presented (Hirsch, Howie, Nicholson, Pashley & 
Whelan, 1977; Humphreys, 1979; Spence & Zuo, 1992). 
A useful form of this Bloch-wave theory is the scattering- 
matrix approach of Niehrs (1959) and Sturkey (1962), 
which we adopt here with the formalism of Speer, Spence 
& Ihrig (1990). We consider only a two-dimensional 
projection of the crystal potential in the beam direction 
[zero-order Laue-zone (ZOLZ) reflections]. We exclude 
inelastic processes and absorption initially. The solution 
inside the crystal of the relativistically corrected 
Schroedinger equation may be expanded over recipro- 
cal-lattice vectors g as a sum of Bloch waves of the form 

1/'r(J)(r) '-- Z C(gJ)(k(j)) exp[2ni(k(j) + g)" r]. (1) 
g 

Inserting this, together with a Fourier expansion of the 
periodic crystal potential V(r), into the Schroedinger 
equation shows that the Bloch-wave expansion coeffi- 
cients Cg(k) satisfy the dispersion equations 

[K 2 - (k + g)2]Cg(k) + ~ UhCg_h(k ) = 0. (2) 
h¢:0 

Here, K 2 = ( 2 m e E / h 2 ) +  U o is the squared mean 
wavevector of the electron inside the crystal (corrected 

for the effect of the average electrostatic potential Uo) 
and eE is the beam energy. It can be shown (Saldin & 
Spence, 1994) that, for beam energies sufficiently high to 
allow the neglect of exchange and virtual inelastic 
scattering effects (Rez, 1978), the electron beam is 
diffracted by the electrostatic Coulomb potential alone, 
which has Fourier coefficients Vg = h2Ug/(2me). 
Excitation errors 

Sg = ( - 2 K / - g  - gZ)/2K (3) 

may be defined in the high-energy approximation, where 
K, is the component of the mean wavevector in the plane 
of the crystal slab, running from the center of the Laue 
circle to the origin of reciprocal space. If backscattered 
waves are neglected, the locus of allowed Bloch-wave 
labeling wavevectors k (j) may be defined by y ( J ) =  
k~ j) - K~, with the x and y components of k (j) fixed by 
boundary conditions. The solutions of equation (2) may 
then be written in terms of F (j) and Sg as the family of 
eigenvalue equations 

(Sg F(J)) C( j ) ' -~  Z K' g~(J) -- " h"-'g-h = 0 (4) 
h¢0 

o r  

AC (j) = y(J)C (j), (5) 

where the structure matrix A = A(Kt) contains structure 
factors Fgh = Ug_h/2K in off-diagonal positions and 
diagonal elements sg. (Appendix A provides an example.) 
Here, Sg, C~ j) and F c/) are all functions of the beam 
direction Kt. For centrosymmetric crystals, Fgh = Fhg 
may be chosen real if a suitable origin is taken, A is 
symmetric and, for the systematic orientation, entries 
along any sub- or superdiagonal are equal. C °) is a 
column eigenvector whose elements are the real 
quantities ((J). For noncentrosymmetric (acentric) crys- 
tals, Fg h = F~g are complex, v~J) are real, A is Hermitian 
and Cg c j) are complex. 

Imposition of boundary conditions appropriate to a 
parallel-sided slab allows the column vector q~g contain- 
ing the Bragg beam amplitudes diffracted by a thin 
crystal of thickness t to be written as a unitary 
transformation 

q~g = Sq~ o (6) 

in the absence of absorption, where (Hirsch et al., 1977) 

S = C[L]C -~ = exp(2yriAt) (7) 

with C an orthogonal matrix ofeigenvectors C ~j) and L a 
diagonal matrix whosejth element is X °) = exp(2niFc/)t). 
The column vector q~o, describing the incident wave, 
contains zeros everywhere except for a central entry of 
unity in the symmetric orientation. 

In the absence of absorption, the scattering matrix S = 
S(K,, t) is complex, symmetric, orthogonal and unitary 
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for centrosymmetric crystals, with complex eigenvalues 
~.tJ~ of unit modulus. S is also centrosymmetric in the 
systematics orientation. Since C is orthogonal, C -1 = C r. 
For noncentrosymmetric crystals without absorption, S is 
complex, orthogonal, unitary and symmetric (but A is 
Hermitian). C is complex but not symmetric. The 
eigenvalues y are real in both these cases. For 
centrosymmetric crystals with absorption, S is complex, 
symmetric, not unitary or orthogonal and y are complex. 
For noncentrosymmetric crystals with absorption, S is 
neither symmetric nor unitary and y are complex. 

The inversion of dynamical amplitudes from a single 
data set is seen to be impossible, since the addition ofn/t 
to the ei.~envalues ycJ) of A (with n a different integer for 
each y~J)) leaves S unchanged but alters the structure 
factors of the crystal. Inversion from a single data set is 
therefore not unique (as may be understood from a study 
of the complex logarithm function), so that several 
different crystals could, in principle, give rise to identical 
dynamical diffraction patterns at one thickness (but not at 
every thickness). 

3. Invers ion  - s y s t e m a t i e s  

The principle of the method is explained most clearly for 
the systematics orientation where a single line of 
reflections is simultaneously excited. Then a simple 
relationship exists between the Miller indices of a beam 
and the indices of the scattering matrix. The method is 
extended to two-dimensional patterns and noncentrosym- 
metric crystals with limited absorption effects in later 
sections. Let G be a diagonal matrix whosejth element is 
yc/). From equation (5), the wanted matrix of structure 
factors 

A = C[G]C-' (8) 

can be found if the eigenvectors C of S and the 
corresponding eigenvalues y~J) in G can be found. We 
discuss each of these problems in turn, assuming that the 
crystal thickness t and the excitation errors are known. 
Now the eigenvectors C of A are also those of S, so that, 
if all of complex S can be found, C [and ~c/)] can be 
found by diagonalizing S. However, one electron 
diffraction pattern provides only the modulus squared 
of the entries in a single column (and row) of S. In the 
symmetric systematics orientation (Kt = 0), for example, 
only the central element of the column vector q~o [in 
equation (6)] describing the incident beam is nonzero and 
the complex dynamical Bragg scattering amplitudes 4~g 
are therefore equal to the central row and column of 
S(K t - 0), since S is symmetric. Our general approach is 
to use certain periodicity relations among the eigenvec- 
tors and eigenvalues to show that the remaining required 
columns in S are given by the Bragg amplitudes 
diffracted by the crystal in certain new orientations. This 
leaves two problems remaining: firstly, the problem of 

determining the complex entries ~bg in S (rather than the 
14,g] 2 obtainable from experimental intensities) and, 
finally, the problem of finding the ytJ~ values for G in 
equation (8) from the eigenvalues ,k ~j) of S. An 
experimental coherent convergent-beam diffraction ar- 
rangement with overlapping orders is shown to result in 
interference between the elements of adjacent columns of 
S(K, = 0), so that, by a succession of tilting experiments, 
all of complex S(K, = 0) may be found. This allows the 
eigenvectors of S (which are also those of A) to be 
obtained. Finally, we use the thickness- (or electron- 
wavelength-) dependence of the eigenvalues ~JJ)(t) to 
obtain unique estimates of the eigenvalues F ~j) of A. 
Equation (8) then gives the wanted structure matrix, from 
which the crystal charge density may be obtained by 
Fourier synthesis. 

First consider finding the missing elements of S. In the 
following, we show that these may be found by tilting the 
crystal. In the symmetric orientation for systematic 
reflections, S is symmetric, complex and orthogonal. 
For centrosymmetric crystals, it is also centrosymmetric, 
with the typical form 

E ab !] b d 
c b 

(9) 

For noncentrosymmetric crystals in the systematic 
orientation (without absorption), S is symmetric rather 
than centrosymmetric and we discuss that case below. 
The properties of centrosymmetric matrices are discussed 
elsewhere (Cantoni & Butler, 1976); they possess equal 
numbers of odd and even eigenvectors. An N × N 
centrosymmetric matrix (corresponding to N beams) 
contains (N + 1)2/4 distinct entries, thus the entire 
matrix can be obtained from a knowledge of one 
quadrant. According to Bloch's theorem, the wavefunc- 
tion in (1) is periodic in reciprocal space, since all 
solutions of the wave equation for the general wavefield 
inside the crystal may be defined within the first Brillouin 
zone (Metherell & Fisher, 1969). In consequence, 

Cg~J)(k ~;)) = ~tJ)(k <jl - h). (10) 
"~ g + h  

Since the x components of k and K t a r e  equal, this 
equation relates eigenvector elements between two 
orientations that differ by the addition of a reciprocal- 
lattice vector to K,, the vector defining the center of the 
Laue circle. For Kt = kx = 0 (symmetric orientation), the 
fight-hand side of (10) refers to the second-order Bragg 
condition along the systematics line where h is the first- 
order reflection and Kt = -h .  A second periodicity 
condition exists for similar reasons amongst eigenvalues. 
Because of the periodicity of the dynamical dispersion 
surfaces (Hoier, 1972), we have 

y ( J ) ( k  - h) = y ( J ) ( k )  + s h. (1 1) 
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With these results, it is possible to compute the diffracted 
wavefield for any orientation from a knowledge of  
Cg(J)(K,) and y(J)(K,) for values of K, given within the 
first Brillouin zone only. It follows that the nonobservable 
elements in S(K, = 0) are equal to observable elements in 
S(K, = h). For example, consider the three-beam sys- 
tematics case with beams - h ,  0, h. If primes are used to 
denote the tilted orientation K, = - h  at the second-order 
Bragg condition, the central element of the scattering 
matrix 822 becomes, from (7), 

$22 = (Co(l)) 2 exp{2rri[y(l)(O) + Sh]t} 
+ (Co(2)) 2 exp{2rri[y(2)(O) + sh]t} 
+ (Co(3)) 2 exp{2rri[y(3)(O) + sh]t}, (12) 

while the element in the third row and second column is 

S~2 = C~(I)C0 (1) exp{2n-i[y(l)(0) + sh]t} 
-[- Ch(2)Co (2) expl2zri[y(2)(0) + sh]t} 
"[- Ch(3)Co (3) exp{2zri[y(3)(0) + sh]t}. (13) 

The phase factor exp(2zrisht) is common to all terms in 
the matrix (h = K, is not a variable) and so does not 
affect phase differences between beams. Applying (10) in 
the form r-'(J) tk- O) = cg(J)(Kt - h )  to (12) gives 

, . ~ g _ h k ~ t  - - - -  _ _  

sh  [(c(_'~)) 2 ('> = exp(2zriy t) + (C(_22) 2 (2) exp(2rriy t) 
+ (c~h))~ (3) exp(2]tiy t)] exp(27risht), 

where y(i) = y(o(0). Apart from the last phase factor, this 
is equal to the term S~I in the matrix describing the 
symmetric orientation Kt = 0. Similarly, (13) becomes 

S'32 = [Co(')C(_~ exp(2zriytt)t) + C(2)C(_2 2 exp(2zriyt2)t) 
+ r-',..0(3) "-'-hr-' (3) exp(2n.iy(3)t)] exp(2zris h t), (14) 

which is equal to element $2~ for the symmetric 
orientation. In general, if the beams of  the systematics 
line are indexed as ng, then Spq(Kt = ng) = 
Sp-n, q_n(Kt = 0). Entries in the scattering matrix S' 
for a tilted orientation Kt = nh correspond to those in the 
matrix for the symmetric orientation if shifted in S' by n 
places to the left (for example) along the direction of the 
diagonal. This moves an entry in S'(K, = nh) to the 
position of  the same entry in S(Kt = 0). Positive and 
negative tilts (values of  Kt) move entries in opposite 
senses parallel to the diagonal and are equivalent for 
centrosymmetric crystals. Conversely, we may consider 
that each tilt by Kt -- nh moves that column vector X in 
S(K, -- 0) which lies n columns to the left of  the central 
column into the central position for observation. X is also 
moved n positions downward. This is indicated schema- 
tically in Fig. 1, which shows the form of  the 
centrosymmetric matrix for the seven-beam case in the 
symmetric orientation ( K t - - 0 ) .  The upper quadrant 

(shaded) indicates the (N + 1 ) 2 / 4  = 16 distinct complex 
entries. The columns on the left of  the central column are 
labeled below by the orientation that will bring them into 
the central observable position [e.g. g] = ( l l  1), g2 = 

C1 C2 C3 C4 

\ a  b c d e f y 

e _ k f ,  k ~ ; i n l  ~ 

g f e d c b a 

Kt=3g Kt.=Zg Kt=g gt=O 
(a) 

l 

¢o(3g) ¢_(2g) ¢2(g) ¢40) 

0g(3g) 00(2g) ~)(g) ez?)  ¢-3(~ g) (~4~-2g)¢5(-3g) 

~)z~3g) 0g(2g) ~)o(g) ~(0)  0_z~-g)¢3(-2g) ~_4~-3g) 

~)3~3g) 0Zg(2g) eg(g) %(0) ~)g(-g) ezt-2g)0_3~-3g ) 

04~3g) 03(2g) ~(g)  eg(0) ¢o(-g ) ~)_(-2g)~_z~-3g) 

%(2g) %(0) %(_g) ¢o(_2g)%(-3g) 

¢,lg) %(0) % (-2g) ¢o(-3g) 

(b) 

Fig. 1. (a) The centrosymmetric scattering matrix for a centrosymmetric 
crystal in the symmetric systematics orientation. Only elements in the 
upper shaded triangle are distinct; only the central column is 
observable. Element o in the observable central column of the matrix 
for tilted condition K t = 2g is equal to element i in the matrix for the 
symmetric orientation. Similarly for j and c. Hence, experiments 
which interfere o and j give phase differences between elements in 
rows Cl and C2 of the matrix for the symmetrical orientation. (b) 
The same matrix S for the symmetric systematics orientation but with 
entries labeled by the amplitudes of diffracted beams occurring in 
tilted conditions. The quantity in parentheses is the value of K,, 
which defines the beam direction. These amplitudes are equal to 
those in S apart from certain phase factors. Not all elements are 
distinct, since the matrix is symmetric and centrosymmetric. Here g 
is the first-order Bragg reflection. 
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(222), g3 ---- (333) etc.]. These results arise because the 
effect of tilt is to move all elements down one position in 
C in (7) and hence across one position in the transpose 
C r = C - l ,  resulting in a diagonal movement in S. The 
effect of tilt on the eigenvalues can also be understood by 
noting that the tilted set of excitation errors can be 
obtained from the symmetric orientation by moving them 
all along one place on the diagonal of A and adding an 
unimportant constant. In all experiments (for all tilts), 
because of our arrangement of the diagonal of A, only 
the central column of S or S' is observable. 

Now consider the experimental arrangement shown in 
Fig. 2. This shows the diffraction conditions for coherent 
convergent-beam diffraction, with interference between 
overlapping orders, which can be set up on modem field- 
emission STEM instruments (see Spence, 1978; Spence 
& Cowley, 1978; Cowley, 1986; Zuo & Spence, 1993; 
McCallum & Rodenberg, 1992). High-contrast interfer- 
ence fringes are also seen between overlapping orders on 
modem FEG TEM/STEM instruments, as demonstrated 
recently by Vincent, Vine, Midgley, Spellward & Steeds 
(1992), Tanaka, Terauchi & Tsuda (1994) and others. 
Using the preceeding result, it will now be shown that the 
intensity at points such as D can be described by 
interference between neighboring matrix elements in the 

a IA 

D D 
(a)  (b) 

Fig. 2. Diffraction conditions in coherent STEM which allow the phases 
of matrix elements in the scattering matrix to be determined. (a) 
produces interference between columns C4 and C3 in Fig. 1, while 
(b) gives interference between C2 and C3. The direction of the 
systematics line is indicated by g in each case. 

same row of S(K, = 0). We assume that the illumination 
aperture is coherently filled, so that interference occurs 
between optical paths AOD and BOD. Because only 
scattering through multiples of twice the Bragg angle is 
allowed, the amplitude at D is the sum of the direct beam 
AOD, 4,o(K, = 0), in the symmetric orientation, and the 
first-order diffracted beam BOD, Cg(K, = - g )  at the 
second-order Bragg condition. If the beams of the 
systematic line are labeled with an integer index m and 
g -- 1/d, where d is the first-order lattice spacing, then 
the complex amplitude recorded at D in Fig. 2(a) is (with 
m = n  = 0 )  

' I ' ~ , (x )  = q~,(K, = - m g )  exp(2rringx) 

+ ~,+~[K, = - ( m  + 1)g] exp[2rri(n + 1)gx] 
[.-, t(i) [-~ '(i) [][~ 

Y~ "-'0 ~,g ~'", = - rag)  exp[2rri(y'(/)t + ngx)] 
i 

t-"~i)t -''{i) rk- - ( m  + l)g] + ~ "~0 "-'(,+l)gt'", = 
i 

x exp{2rri[y't/)t + (n + 1)gx]}. (15) 

In Fig. 2(b), a crystal tilt K, = - g  has been applied. The 
preceding equation describes the case of a general tilt 
Kt = - m g  for reflection ng. Then, n is the row index of 
the matrix element in the central column of the scattering 
matrix for the inclined orientation. Applying (10) [in the 
form given after equation (13)] and (11) gives an 
expression in terms of the scattering matrix for the 
symmetric orientation: 

%(x) = E C%~C~-m~(O) 
i 

x exp(2rri{[yti)(o) + Smg]t + ngx}) 

(-,(i) (-,(i) tU] 
JI- E "- ' - (m+l)g ' -~(n-m)g~VJ 

i 

x exp(2rri{[y(i)(o) + Stm+l)g]t + (n + 1)gx}). 

(16) 

Here the subscript of the first C in each pair is the column 
index in the scattering matrix for the symmetric 
orientation and the subscript of the second C is the row 
index, in terms of the original beam index and tilt (see 
Fig. l a). We define 

CH.G(O ) exp(OH.c,) y~ (i) ti) = C;}~(O)Cog(O)exp[2rriy(i)(o)], 
i 

(17) 

where H = - m  and G - n - m  are the row and column 
indices in the matrix for the symmetric orientation. Then, 

IIID(X ) = CH,G(O) exp[2rri(S Hgt + ngx) + iOn,c, ] 

+ C~t_l),G(O ) exp{27ri[s(_H+l)gt + (n + 1)gx] 

+ iO~H_l~.~ }. (18) 
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The intensity is 

ID(X) = ICH.GI 2 -4-ICH_I.GI 2 + 2C. .cCI~_, .o  

x cos[27r(ASt + gx) + OH, o -- 0{1t_11,c~], (19) 

where AS = S -H  -- S_ ,+ l .  We may thus interpret the 
result of the experiments shown in Fig. 2 as providing 
interference between columns H and H -  1 of the 
scattering matrix for the symmetric orientation S(K, = 
0). The set of all overlaps in Fig. 2(a), for example, is 
described by interference between the elements of the 
central column C4 of S(K, = 0) and the neighboring 
column C3 - each overlap defines a different row. For 
example, at D in Fig. 2(a), interference occurs between 
elements X and o (in row 4) of Fig. l(a), while the next 
overlap along the systematic line [not shown in Fig. 2(a)] 
involves interference between elements o (in C4) and 
element p in C3. In Fig. 2(b), the crystal has been tilted to 
a new Bragg condition, so the set of all overlaps is now 
described by interference between C3 and C2, and so on. 

To further clarify this, in Fig. l(b) the scattering matrix 
for the symmetric orientation S(K, = 0) has been re- 
drawn with the entries replaced by the amplitude of 
diffracted beams scattered under various even-order 
Bragg conditions. Quantities in parentheses indicate 
values of K,. We see that the complex amplitudes at 
the midpoints of overlapping orders in Fig. 2(a) consist 
of the interference between elements of columns 3 and 4 
of this matrix; for example, (15) (with m = n = 0) 
describes interference between elements of the central 
row in columns three and four. Similarly, the experiment 
shown in Fig. 2(b) involves interference between the 
second and third columns, and so on. Since only the 
central column of S is observable (for any tilt), arrows 
have been drawn in Fig. l(a) that show how a pair of 
adjacent reflections in the observable central column 
appear in adjacent columns (end of arrow) in the 
scattering matrix S(K, = 0) for the axial orientation. 
Each reflection (o and j  in the central column) is referred 
to a different orientation, and therefore both contribute to 
the intensity at a point such as D in Fig. 2(a). Thus, the 
phase differences between elements of the same row but 
different columns may all be measured in pair-wise 
fashion using tilting experiments - a kind of dynamical 
'stepping out' (Spence, 1978; McCallum & Rodenberg, 
1992). If S is symmetric, so that the central row equals 
the central column, this is sufficient to phase the entire 
scattering matrix. Then the eigenvalues and eigenvectors 
of S(K, = 0), needed for (8), can be found. 

A complication arises, however, because the intensity 
in (19) depends on the relative position x of the coherent 
probe within the first-order lattice spacing d = 1/g. All 
interferences between each pa i r  of adjacent columns in 
the scattering matrix are obtained for the same probe 
position at a given tilt. The question then arises as to how 
the analysis is affected by the inevitable changes in probe 

position relative to the crystal (on an atomic scale), which 
will accompany changes in crystal orientation as one 
attempts to phase successive pairs of columns in S. 
Before considering this, we note that the effect of lens 
aberrations cancels at the midpoint of the overlap (Zuo & 
Spence, 1993). The arrangement is equivalent, by 
reciprocity, to 'aberration-free' two-beam lattice imaging 
with inclined illumination, for which a stationary-phase 
focus condition may be selected to allow use of the 
largest possible detector (Spence & Cowley, 1978). The 
fringes formed within the overlap region can also be 
interpreted as a point-projection shadow image (or in-line 
electron hologram) of the crystal lattice (Zuo & Spence, 
1993).The amplitudes CH, G and CH-1. G may be obtained 
(with an ambiguity of sign) from intensity measurements 
with a smaller illumination aperture which prevents 
overlap of orders. The intensity ID(X) at the midpoint of 
all the overlapping orders may then be measured 
simultaneously as a function of x (for a particular value 
of the column index H) as the STEM probe is scanned in 
the direction of the systematics line. The relative phase 
delays of these sinusoidal curves give the difference 
between the differences A~)HG = (~)H.G--(~')(H-I),G. 
Equation (19) may also be inverted for a particular value 
of x to give the quantities (2rrgx + A(=)HG), since AS is 
known and the amplitudes C can be measured. 

Because of the symmetry of the matrix, fixing one 
phase (corresponding to a choice of origin) then 
determines the phase of every entry in S(K, = 0), 
according to (19). For example, assume initially that all 
phase differences for every pair of columns could be 
measured for the same value of probe position x. Then a 
knowledge of all differences along the central row, 
together with the definition of, say, (0o, 0 + 2ngx) ,  fixes 
all phases along this row. This then fixes all values along 
the central column, since S is symmetric. Since the 
differences between elements in the same row and 
adjacent columns are also known, the entire complex 
scattering matrix can be found. 

In fact, however, movement of the crystal with respect 
to the probe during the tilting operation (on the scale of 
the unit cell) is inevitable and must be allowed for by 
introducing separate values of the probe positional 
phases, for every tilt, as free parameters. Then, in more 
detail, the measured arguments of the cosine functions in 
(19) define a system of linear equations. Assume that 
these arguments are measured for a series of tilts, each 
with a different probe position xi = dp//2n" (and probe 
'phase' pi). Then, in the seven-beam case, the inter- 
ference between columns four and five of S in Fig. l(a) 
gives measurements 

bl = P0 + ('~)d - (M)e 

b2 = P 0  + ®j - Ok 

b3 = P0 + (M)o - Op 

b4 = Po + 6)x - (+o etc. 
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and 

b9 --Pl + (~)~ - (M)r 

b l 0 - - P l  + ~ k - - ~ l  

bll  : P l  -Jr- (~p -- (?)k 

bl2 = Pl + 6)0 - (')j etc. 

for columns five and six, and similarly for columns six 
and seven, with probe phase P2. Additional equations 
could be generated (but are not needed) by the difference 
between the differences, obtained from a comparison of 
the sinusiodal ID(x) curves for different overlaps. We may 
then establish an origin by assuming Po = 0. Because of 
the symmetry of S, which ensures that the same elements 
occur in different columns, this system of linear 
equations 

D x  = b (20)  

(with x and b column vectors) may be solved by standard 
methods. Here, x contains the phases 6) and relative 
probe positions p;, while b contains the measured cosine 
arguments. The coefficient matrix D is sparse, contains 
only values 0, +1, is not singular and has a condition 
number of about 10 in typical cases. In general, for a 
centrosymmetric crystal, there are (N -t- 1)2/4 distinct 
entries in S, together with (N + 1)/2 - 1 probe phases, 
giving fewer unknowns than the number N(N + 1)/2 of 
equations (difference-difference equations not included). 
In this way, using one tilt setting of the crystal for every 
column in S, all of the complex entries in the scattering 
matrix S(K, = 0) may be found and hence its eigenvalues 
~.u) and eigenvectors Cj. In summary, because the 
crystallographic part of each phase occurs at least twice, 
in different positions in the symmetric scattering matrix, 
there is enough information to solve for the probe 
positional phases, which differ for every pair of columns 
in S. 

With modern computer-controlled goniometers and 
probe scanning, the collection of data from a set of such 
diffraction conditions might be automated. The crystal 
must be tilted successively to direct its zone axis to the 
midpoint of every overlapping pair of diffraction discs in 
the pattern and, for each of these tilts, the entire set of 
midpoint intensities must be recorded, perhaps as a 
function of electron probe position. Note that the electron 
optical conditions remain unchanged as the crystal is 
tilted, so that the optic axis always bisects the incident 
beams, causing aberrations to cancel. It is a remarkable 
feature of this arrangement that, because only the 
interference between neighboring orders is used, the 
phase of very high orders can be obtained, despite the use 
of a probe whose width is much larger than the d spacing 
of these high orders. Thus, the coherence angle 2(+)8 
needed may be much smaller (equal to only twice the 
first-order Bragg angle) than the Bragg angle for the 
highest-order reflections phased (e.g. Fig. 2b), with a 

consequent relaxation in demands on electron source size 
and electronic stability. The amplitude and phase of 
structure factors may thus be determined for orders of 
diffraction that are well beyond the image resolution limit 
of the electron microscope used (Nellist & Rodenberg, 
1994; Nellist, McCallum & Rodenberg, 1995). A 
resolution limitation may occur, however, owing to the 
decreasing intensity of high-order reflections in the 
region of overlap - these reflections at this point are far 
from the Bragg condition (see Fig. 2). The use of a higher 
accelerating voltage to 'flatten' the Ewald sphere will 
reduce this effect. 

The inversion, based on equation (8), is finally 
completed by finding the real quantities y(J) from the 
complex thickness-dependent eigenvalues of S(t), 

)~(J)(t) ---- exp(27r iy (J ) t )  = cos(27ry(J) t )  4- i s i n ( 2 r r y ( J ) t ) .  

(21) 

This may be performed, and a unique inversion ensured, 
by plotting, say, Im{~.(J)(t)} = sin(2rry(J)t) against 
thickness and noting the period (y(j))-i of the resulting 
function. [These periods are not extinction distances 
(y{o _ y~J))- ~, however a reflection at the Bragg condition 
shows an approximate period (2y{J)) - ~.] Ideally, measure- 
ments of S(t) and ~.~J)(t) at just two thicknesses are 
sufficient to fix the amplitude and maximum period of all 
k(J)(t). However, in the presence of noise and absorption 
(discussed below), several thicknesses will be needed. We 
note that an arbitrary experimental phase shift applied to 
the incident beam ~o [equation (6)] in data collected at a 
second thickness does not affect the eigenvalues of S, so 
that the absolute phase difference between measurements 
made at different thicknesses is not required. 

An important point of detail arises also in the ordering 
of the eigenvalues. Diagonalization of a series of 

+1 .C 

\\ / /  
• \ / 

• / /  

° °  ~,. -._ ..-. ~,l~ckness (nm) 

.2 -3 4 5 6 7 8 9 10 

Fig. 3. Real part of eigenvalue of scattering matrix S plotted against 
thickness for aluminium (l 1 l) systematics at 1 MeV. These are 
cosine curves. The ordering of the eigenvalue labels changes at 
5.5 nm thickness; black dots indicate the required uninterrupted 
ordering. 
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complex matrices S(t) will produce eigenvalues whose 
ordering may abruptly change at certain thicknesses. 
However, the continuity of the function x(J)(t) can be 
used to determine the correct ordering as a continuous 
function of thickness. Fig. 3 shows a seven-beam 
simulation for the case of the (111) systematic reflections 
in aluminium at l MeV. The real part of X°)(t) - 
cos[27ry(J)t] is plotted as a function of thickness for 
several eigenvalues. At a thickness of 55 A, the ordering 
of the eigenvalues returned by the 'Eispack' routine 
(Smith, 1976) alters; however, it is clear from the 
continuity requirement (shown by black dots) that, for 
example, above this thickness X °) should be re-labeled 
X (4). Other crossings are evident. 

A simpler method may be to use patterns collected at 
two accelerating voltages, which, nonrelativistically, is 
equivalent to a change in thickness At. Then, the ~,(J) 
may be found uniquely by differentiation, using, from 
equation (21), 

A K  (j) 0~. (j) 1 
At)~ (j) - -  0t X(J) = 27riY(J)" 

Having obtained the complete complex scattering matrix 
(and hence its eigenvectors) from a series of tilting 
experiments, and the corresponding set of eigenvalues 
from the thickness or wavelength dependence of S(t), the 
structure matrix A containing the wanted structure factors 
may be obtained using (8). 

4. Two-dimensional patterns 

The preceding approach may be extended to the analysis 
of two-dimensional cross-grating or ZOLZ diffraction 
patterns in a straightforward way, however the relation- 
ship between the Miller indices of the diffraction spots 
and matrix indices must be determined and the shape of 
the illumination aperture considered. The central column 
of S(K, = 0) now contains all the reflections in the two- 
dimensional pattern. Other columns describe two-dimen- 

sional patterns from crystal orientations differing by K t  - -  

g, where g is any reciprocal-lattice vector. Fig. 4 shows 
the general two-dimensional lattice Ao (P1). The lattice 
formed from this by the midpoints of the overlap of all 
neighboring diffraction discs is not identical to Ao, rather 
it is centered and contains additional points B. No Bragg 
scattering can occur between these two sublattices. Only 
one sublattice of points is required to phase the scattering 
matrix, since K, values within the illumination aperture 
terminating at A and B do not differ by a reciprocal-lattice 
vector. (Points B could be eliminated by using an 
elliptical illumination aperture.) 

Fig. 5 illustrates the application of the two-dimen- 
sional form of equation (19) to a ZOLZ pattern for 
interference between reflections g and, in a second 
orientation, (g + h). The intensity recorded at D is 

ID(r, A0g.g+h) = I~bg(K, - 0)12 + I~bg+h(K, -- --h)l z 

+ 21¢g1 [~bg+hl cos[2n'(ASt + h .  r) 

+ A0g.g+h 1. (22) 

In order to fi l l out all o f  S (K /=  0) and obtain interference 
between every pair of columns in S(K, = 0), it will be 
found necessary to tilt the crystal by every two- 
dimensional lattice vector G using a coherently filled 
illumination aperture that just spans each of the 
reciprocal-lattice basis vectors. More specifically, K t  

must take successively each of the unchanging indices 
in every column of S and the entire two-dimensional 

Kt=-h ~ IKt=O 

#-TUTU75 

Fig. 4. General two-dimensional lattice with diffraction discs on each 
site. Bragg diffraction couples all points A and all those labeled B but 
does not occur between them (arrow). 

I D  

Fig. 5. Schematic indication of  dynamical interference between 
overlapping coherent diffraction orders. The intensity at D is 
measured as a function of  probe position. 
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pattern recorded in each case. The pattern of overlapping 
midpoints can be thought of as two point diffraction 
patterns superimposed after displacement by a lattice 
vector. Each is described by a different value of K,, 
measured from the origin of reciprocal space to the center 
of the Laue circle, and proportional to the angle between 
the crystal zone axis and the beam in real space. In 
general, the complex amplitude at points such as D is 
given by the sum of elements from the central column of 
two different scattering matrices S(Kt = G) and S(Kt = 
G - h ) ,  such as o and j in Fig. l(a). Thus, their 
interference can be interpreted as occurring between c 
and i in different columns of S(Kt = 0). Appendix A 
contains an indexed example for a face-centered cubic 
lattice. 

The general procedure for inversion using two- 
dimensional patterns is as follows: 

(i) Using standard CBED methods, the space group of 
the crystal must be found and the ZOLZ pattem 
corresponding to the projection of the structure required 
must be indexed (for details, see Spence & Zuo, 1992). 
The cell dimensions and Bravais lattice can be found 
accurately by the method of Zuo (1994), which uses the 
three-dimensional HOLZ lines in the central disc. Crystal 
thickness can be found to a good approximation, 
independently of the structure factors, using two-beam 
analysis (Spence & Zuo, 1992). 

(ii) The Miller indices so obtained are set out along the 
central column of S(K, = 0), with (000) in the center and 
conjugate pairs on either side, and increasing scattering 
angle away from the center (the order is not critical). 
Terms ctgi)~ i) may then be assigned to every element of 
the central column of S. It will be seen from the example 
given in Appendix A that this is sufficient to assign a pair 
of Miller indices to every entry in S by inspection. [The 
example is consistent with equation (7).] The sequence of 
Miller indices along the central column of S is also that 
of the diagonal of the structure matrix A and of the 
central column of A. This defines the Miller indices of all 
the structure factors in A and hence of those that will be 
retrieved. (Because of coupling reflections important for 
multiple scattering, more structure factors are recovered 
than those defined by the central column of S). 

(iii) The crystal must be tilted under computer control 
so that K, is set equal, successively, to the lattice vector 
defined by the unchanging Miller index in every column 
of S(K, = 0). The illumination aperture must correspond 
to the difference a between this vector and that of a 
neighboring column. For each of the N tilts, the N 
intensities at the midpoint of all the overlapping discs 
must be recorded simultaneously as the electron probe is 
scanned in direction a. This provides the N z amplitudes 
and phases required to fill out S for a noncentrosym- 
metric crystal. The result of scanning will be a family of 
sinusoidal curves, one for each midpoint, each with a 
different relative phase delay, giving the difference 
between the values of At~)~. g+h in (22) and the values 

of the cosine arguments for some (initially) unknown 
probe position x. By scanning over many cells, the 
signal-to-noise ratio can be improved. The intensities of 
the spots are also required for every tilt - these can be 
obtained using a slightly smaller illumination aperture. 
This procedure can be justified by writing each ~bg in 
terms of CgCo [in S', as in equation (15)] and applying 
the periodicity relation (10). The corresponding pair of 
indices for this term Cg'h' in S(Kt = 0) can then be found 
as in the systematics case. Appendix A gives an example 
for a two-dimensional pattern. The arrows in Fig. l(a) 
indicate how this works in practice for the crystal tilts 
shown below each column. 

(iv) Equation (20) must be applied to the experimental 
data to find the matrix element phases and all probe 
positions except the first, which defines the origin. The 
phase factor ASt in equation (22) is known and has a 
different value for each column of S. 

(v) This entire proceedure must be repeated for several 
thicknesses or electron beam energies and the resulting 
scattering matrices diagonalized. Equation (21) then 
allows the eigenvalues of the structure matrix A to be 
obtained from those of S. With these eigenvalues and the 
eigenvectors of S, (8) gives A containing the wanted 
electron structure factors Ug. 

(vi) The resulting Ug values can be converted to X-ray 
structure factors and a charge-density map synthesized. 
This will show projected atomic positions and, from the 
heights of the peaks, will also give the atomic number of 
the species. By repeating the procedure for different 
zones, a three-dimensional structural analysis may be 
completed. 

5. Noncentrosymmetr ic  crystals 

For noncentrosymmetric crystals without absorption, A is 
Hermitian, y real and S symmetric. Then, S contains 
(N + 1)N/2 distinct entries. The vector of unknown 
phases x in (20) then contains this number plus (N - 2) 
unknown probe positions pi, which is less than the 
number of equations (N - 1)N. The matrix D in equation 
(20) is not singular and hence the same method can be 
applied as for centrosymmetric crystals using two- 
dimensional patterns. Since phase differences between 
columns on both sides of the central column in S must be 
found, twice as many crystal tilts are required as for the 
centrosymmetric case. 

6. Absorption 

If inelastic scattering processes are introduced, the 
corresponding 'absorption' of the elastic wavefield may 
be included in the approximation of a local inelastic 
potential by perturbation methods in the independent 
Bloch-wave model for centrosymmetric crystals (Hirsch 
et al., 1977) or, more exactly, without making the 
independent Bloch-wave approximation, through the use 
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of an optical potential (Rez, 1979). This results, for 
centrosymmetric crystals, in the addition of small 
imaginary parts to Fg = Ug/2K, so that A is no longer 
Hermitian but remains symmetric for centrosymmetric 
crystals. Since S is also then symmetric, the preceding 
method, which requires that S be symmetric, holds for 
centrosymmetric crystals including the effects of anom- 
alous absorption. The eigenvalues y(;) are complex in this 
case, so that the imaginary part of (21) becomes an 
exponentially damped sinusoid, which may be fitted by 
modeling. 

For noncentrosymmetric crystals with anomalous 
absorption included, S and A are general complex 
matrices (Bird, 1990; Spence & Zuo, 1992) and the 
method fails. However, many two-dimensional projec- 
tions of noncentrosymmetric crystals are centrosym- 
metric and so can be analyzed. In addition, the dominant 
contribution to absorption is the mean absorption 
parameter iF'gg (where [F'gg[ << IFggl), which is added to 
all diagonal elements of A. This leaves eigenvectors 
unchanged, adds iF'gg to all eigenvalues of A and 
preserves the orthogonality of S, whose normalization 
is no longer independent of thickness. S remains complex 
and symmetric. Thus, all entries in S can be obtained 
with the inclusion of a mean absorption effect. The value 
of the mean absorption coefficient may be extracted from 
the eigenvalue period analysis. 

Several additional constraints may be applied to 
improve the accuracy of the inversion. For centrosym- 
metric crystals, the phases retrieved must all be zero or rr 
and forbidden reflections should be recovered correctly. 
No use has been made of the space-group information 
available from preliminary CBED analysis, which relates 
many amplitudes and phases, imposing additional 
symmetries on S and so reducing data-collection time 
from the centrosymmetric case treated above. The plane 
group of the various Bloch waves excited can also be 
determined [see Tafio (1988) in Spence (1988), Fig. 5.7, 
for a worked example and tables]. In particular, also, the 
orthogonality requirement for S imposes a powerful 
(nonlinear) condition that relates phases obtained from 
different orientations. This may be applied in cases where 
the mean absorption coefficient alone is used. Finally, 
using the known trace of A, we have 

~×(J) = Es~.  
J g 

7. Discussion 

The main purpose of this paper has been to show that the 
inversion of dynamical intensities is possible in principle 
(and possibly in practice), given their variation with 
thickness and crystal orientation under two-beam coher- 
ent illumination conditions. Since this inversion proce- 
dure is exact, the analysis of simulated data amounts to a 
study of numerical rounding errors and stability. This can 
be used to study the effects of noisy data and errors in 

experimental parameters, such as thickness and Debye- 
Waller factors. The method does not provide a closed- 
form solution, since the diagonalization of matrices of 
order N is required. Although exact, the method is 
inefficient in that it takes no account of the strength of the 
various Bloch waves or beams. The practical implemen- 
tation of this method depends on computer control of 
electron microscopes. In particular, using integrated 
software control of imaging energy filters, CCD cameras 
and digital goniometers, it may be possible to automate 
collection of the required data on a field-emission STEM 
instrument. An imaging energy filter would be essential 
to reduce background by excluding most inelastic 
scattering. 

The most important practical difficulties are likely to 
include the effects of noisy data and the large range of 
periods L </) -- [y(/)]-~. For light elements at 100 kV, the 
periods L </) range from a few nanometers to a few 
hundred nanometers. At 1 MeV for light elements, the 
lower limit increases to tens of nanometers with an upper 
limit of a few hundred nanometers. Higher accelerating 
voltages are therefore desirable to increase the shortest 
periods. The accuracy with which fractional atomic 
coordinates are determined depends on errors in the 
structure-factor amplitudes and phases, and this will 
depend on many factors, including the number of 
thicknesses used, the number of unit cells scanned over, 
the neglect of anomalous absorption for noncentrosym- 
metric crystals, and on the precise location of the Bragg 
condition under multiple-scattering conditions. An in- 
dependent measurement of the incident-beam intensity is 
needed for every thickness. The variation of crystal 
thickness allowable between different orientations should 
be small on the scale of the smallest L <j), so that 
atomically smooth surfaces are not required. 

It is possible that by suitable choice of the illumination 
aperture shape it may be possible to excite several 
different independent pairs of diffraction patterns (with 
interference occurring only within each pair), so that 
more than one pair of columns in S might be phased for 
each probe scan. This process is limited by the range of 
coherence across the aperture, and by the need to avoid 
allowing three incident beams to contribute to each 
measured intensity. 

We note that the nonrelativistic dynamical theory 
contains only products of the electron wavelength and the 
crystal thickness. This may be most useful in dealing 
with degenerate eigenvalues and/or near thicknesses 
where the ordering of eigenvalues changes abruptly. (At 
relativistic energies, the diagonal and off-diagonal 
elements of A have different dependencies on electron 
wavelength.) 

The Bravais lattice and cell constants may be 
determined with an accuracy of about one part in 10 -4, 
using the novel technique of Zuo (1994), which is based 
on measurements of the positions of the fine three- 
dimensional HOLZ lines in the central convergent-beam 
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disc. Taken together, these two methods may therefore 
provide a general method for solving unknown micro- 
crystal structures by electron diffraction. 

APPENDIX A 
A f.c.c. (111) zone-axis pattern 

In order to clarify the method for the purposes of 
algorithm development, the indexing of the scattering 
matrix is given below for a face-centered cubic structure 
in the (110) zone-axis orientation, with seven beams 
forming a two-dimensional pattern. The central column 
C4 contains quantities whose squared moduli are the 
multiply scattered Bragg-beam intensities for the upper 
indexed reflection. These are the beams in the experi- 
mental pattern selected for analysis. It can be seen that 
the entire matrix can then be indexed from a knowledge 
of C4. 

(111) and KI2)= (111) since these are the unchanging 
indices of C5 and C6. The Laue circle is the intersection 
of the Ewald sphere with the ZOLZ. Unlike this 
reciprocal-space diagram, the experimental diffraction 
patterns do not share a common origin and consist of two 
spot patterns (one for each K, value) with a relative 
displacement of (002) superimposed. This choice of 
orientations may be justified by working back from the 
matrix S(K, = 0) to the experimental arrangement. From 
the matrix, interference between columns five and six 
would result from terms of the form 

7 
4, = ~_, C~)(O)Cl'li(O) exp(Zrry~° t) 

i=1 
7 

Cg (0)Cil I (0) exp(2rrV<°t). 
i=1 

S(Kt 

C1 C2 C3 
oo2/oo2 002/lil oo2/111 
lii/oo2 l i i / l i3 l i i / l i l  
l i l / 002  131/ l i i  l i l /131 

= 0) = 000/002 000/111 000 / l i l  
111/002 111/111 l l l / l i l  
i11/002 311 / l i i  i l l / l i l  
002/002 o o 2 / l i i  oo2 / l i l  

C4 
00~/000 
I 11/000 
131/000 
000/000 
111/000 
311/000 
002/000 

C5 
002 / 111 
111/111 
131/111 
000/111 
111/111 
711/111 
002/111 

C6 C7 
002/111 002/002 

_ _  

111/111 111/002 
- -  - -  

l l l / l l l  l l l /O02 
- -  

000/111 000/002" 
l l l / l l l  111/002 
i l l / i l l  i11/002 
002/311 002/002 

In this matrix, according to (7), the symbol 002/111 for 
example means 

7 
i )  i )  Cg.h-- Z ~o~<,I exp(2n 'y( i ) t ) "  

i=1 

From this scattering matrix, the structure matrix A may 
be indexed in a manner consistent with the dispersion 
equation (4) as follows, using the central column of S to 
index the diagonal of A: 

002 111 113 
l i l  l i i  002 
l i3 002 l i l  

A =  002 111 l l l  
i l l  220 222 
113 222 220 
004 713 111 

oo~ lii  liS oo~ 
l i i  220 222 l i3 
l i l  222 220 l i i  
ooo lil l ii  oo~. 
111 111 002 113 
i l l  002 i l l  l l l  
002 173 111 002 

Here the diagonal elements are the indices of the 
excitation errors, while off-diagonal elements are quan- 
tities Ug_h/2K, as in equation (5). The inversion will 
generate this matrix of structure factors. 

We consider now the experiments needed to find all 
the phase differences between columns 5 and 6 of S as an 
example. The geometry of the diffraction pattern is given 
in Fig. 6. 

Shown in Fig. 7 are the two Laue-circle constructions 
required to find these phase differences, using K(tl) = 

Using the periodicity relations equations (11) and (10) 
[with k<i)(x y ) =  0] and usin~ K ] I ) = - h  = (111) and 

z 2  x ' ~ . 

W, ' = - h '  = (111), this becomes 

7 
4 , -  ZC(*) (lll)C~(ill)exp[Zzr(Yl'i)i-Sli~)t] 

*=1 g - I l l  

7 
+ Y] Ctgi)i1,(i 11 )C~)(i 11 ) exp[2n'(yl'i)l - si,1)t ] 

i=1 

= ~g_ili(111) exp(2rrSlilt ) 

+ Og-i11(i 11) exp(2rrSliit ), 

)I Ill) 

I-It-1) 

(002) 

-11) 

-1-1) 

(00-2) 

Fig. 6. Diffraction pattern from a f.c.c, crystal in (110) orientation 
formed with an elliptical illumination aperture. 
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1 2) O(l-ll) 

(l-l-l) 

(00-2) 

Fig. 7. Laue-circle constructions for the two incident-beam directions 
needed to 'interfere' columns 5 and 6 of the scattering matrix for Fig. 
5. Values of K¢ are given by the unchanging index of these columns. 

where the indexed arguments in parentheses are the 
values of  K,. Apart from the phase factors involving 
excitation errors (which are known), this equation 
describes the experimental arrangements shown above 
- two patterns with different Kt values (the crystal tilt), 
superimposed after a displacement of  (002), equal to the 
difference between the • subscripts. 

Note added in proof'. Orthogonality constraints aid the 
solution of  equations (20). 

I am grateful for many stimulating discussions on this 
topic with Drs M. Katz, W. Kaufman, J. Zuo and P. Rez. 
S. Speer was involved in earlier work. Supported by NSF 
award DMR9412146.  
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